Content-based medical image classification using a new hierarchical merging scheme

نویسندگان

  • Hossein Pourghassem
  • Hassan Ghassemian
چکیده

Automatic medical image classification is a technique for assigning a medical image to a class among a number of image categories. Due to computational complexity, it is an important task in the content-based image retrieval (CBIR). In this paper, we propose a hierarchical medical image classification method including two levels using a perfect set of various shape and texture features. Furthermore, a tessellation-based spectral feature as well as a directional histogram has been proposed. In each level of the hierarchical classifier, using a new merging scheme and multilayer perceptron (MLP) classifiers (merging-based classification), homogenous (semantic) classes are created from overlapping classes in the database. The proposed merging scheme employs three measures to detect the overlapping classes: accuracy, miss-classified ratio, and dissimilarity. The first two measures realize a supervised classification method and the last one realizes an unsupervised clustering technique. In each level, the merging-based classification is applied to a merged class of the previous level and splits it to several classes. This procedure is progressive to achieve more classes. The proposed algorithm is evaluated on a database consisting of 9100 medical X-ray images of 40 classes. It provides accuracy rate of 90.83% on 25 merged classes in the first level. If the correct class is considered within the best three matches, this value will increase to 97.9%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space

Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In t...

متن کامل

Visual Pattern Image Coding by a Morphological Approach (RESEARCH NOTE)

This paper presents an improvement of the Visual Pattern image coding (VPIC) scheme presented by Chen and Bovik in [2] and [3]. The patterns in this improved scheme are defined by morphological operations and classified by absolute error minimization. The improved scheme identifies more uniform blocks and reduces the noise effect. Therefore, it improves the compression ratio and image quality i...

متن کامل

A framework for medical image retrieval using merging-based classification with dependency probability-based relevance feedback

Content-based image retrieval (CBIR) systems are used to retrieve relevant images from large-scale databases. In this paper, a framework for the image retrieval of a large-scale database of medical X-ray images is presented. This framework is designed based on query image classification into several prespecified homogeneous classes. Using a merging scheme and an iterative classification, the ho...

متن کامل

An Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting

Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...

متن کامل

Automatic Hierarchical Color Image Classification

Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This sche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

دوره 32 8  شماره 

صفحات  -

تاریخ انتشار 2008